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SUMMARY
The relationship betweenmental imagery and vision is a long-standing problem in neuroscience. Currently, it
is not known whether differences between the activity evoked during vision and reinstated during imagery
reflect different codes for seen and mental images. To address this problem, we modeled mental imagery
in the human brain as feedback in a hierarchical generative network. Such networks synthesize images by
feeding abstract representations from higher to lower levels of the network hierarchy. When higher process-
ing levels are less sensitive to stimulus variation than lower processing levels, as in the human brain, activity
in low-level visual areas should encode variation in mental images with less precision than seen images. To
test this prediction, we conducted an fMRI experiment in which subjects imagined and then viewed hundreds
of spatially varying naturalistic stimuli. To analyze these data, we developed imagery-encoding models.
These models accurately predicted brain responses to imagined stimuli and enabled accurate decoding of
their position and content. They also allowed us to compare, for every voxel, tuning to seen and imagined
spatial frequencies, as well as the location and size of receptive fields in visual and imagined space. We
confirmed our prediction, showing that, in low-level visual areas, imagined spatial frequencies in individual
voxels are reduced relative to seen spatial frequencies and that receptive fields in imagined space are larger
than in visual space. These findings reveal distinct codes for seen andmental images and linkmental imagery
to the computational abilities of generative networks.
INTRODUCTION

Why do we have mental images, and what is their relationship to

images we see with our eyes? Neuroimaging studies have

demonstrated significant brain activation in visual areas during

imagery [1, 2] that is specific to content [3]. Multivoxel activity

patterns during imagery and vision are correlated [4–9], and vi-

sual features encoded in activity patterns during vision can be

used to predict [10] or decode [11–13] activity patterns during

mental imagery. However, the correlation between activity pat-

terns during imagery and vision varies considerably across visual

areas [6, 7, 14] and over time [15, 16]. Although variation may

simply reflect known area-to-area differences in signal to noise

during imagery [17], it may also indicate that at least some visual

areas maintain different codes for seen and mental images. Dis-

tinguishing between these possibilities with existing theories and

experimental methods has been challenging.

One obstacle to uncovering differences in the codes for seen

and mental images is that the discriminative artificial neural net-

works that undergird many current predictive models of visual

representation [18–22] lack a mechanism for image generation

and therefore provide no insight. Generative networks [23–25]

offer a compelling alternative model, because they incorporate
Curren
a mechanism for generating images. Although we caution that

mental images should not be taken literally as pictures sampled

from a generative network, the mechanisms that generate im-

ages in these networks may be similar to those deployed in the

brain.

Generative networks embody a model of the visual world that

links visual stimuli to abstract visual features, often interpreted as

‘‘causes’’ of the stimuli. One influential theory of vision holds

that the brain uses such a world model to infer the probability

of abstract features in the environment, given a visual stimulus

[26, 27]. We generalize this theory by interpreting imagery as

inference about visual stimuli that one might see, given an

assumed abstract feature. This inference is inherently useful

and so provides a potential answer to the question ‘‘why do we

have mental images?’’. Conceptually, performing this inference

would require the network to run ‘‘vision in reverse’’ [28], i.e., treat

a clamped abstract feature represented at a high level as input

and then feed activity back toward the sensor level. If such gener-

ative feedback is allowed to carry all the way down to the sensor

level (which can happen in artificial networks, but not in the hu-

man visual system), the networkwill output a synthesized picture.

Under this interpretation of mental imagery, any potential dif-

ference between the codes for seen and mental images will
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depend upon the relationship between stimuli and the

abstract features in the network. In practice, generative net-

works developed for artificial intelligence (AI) applications

often learn a shallow hierarchy of abstract features that offers

effective image compression while maintaining a co-variant

relationship to fine details of visual stimuli [25, 29]. In contrast,

in the human brain, abstract features are encoded across a rela-

tively deep hierarchy of functionally distinct visual areas. Basic

coding properties vary systematically with ascension of this

hierarchy, with representations becoming less spatially precise

and more abstract. For example, units in high-level visual areas

have larger receptive fields (for a fixed eccentricity) [18, 30–32]

and tuning functions with lower spatial frequency preference

[33, 34] than units in low-level visual areas. If high-level visual

areas serve as the effective input during imagery, then these

coding properties of seen stimuli in higher visual areas should

be imparted to (or inherited by) lower visual areas during imag-

ery. We therefore hypothesized that the codes for seen and

mental images should differ substantially in low-level visual

areas. Vision and mental imagery should therefore not only be

marked by differences in relative signal-to-noise ratio (SNR)

but by differential tuning of individual units to seen and imagined

features.

To convert this hypothesis into specific and empirically test-

able predictions about tuning to seen and imagined features,

we conducted in silico analyses of the activation of units in a hi-

erarchical generative network. Specifically, we studied tuning of

units in the network to imagined spatial frequency as well as

receptive fields in imagined space. We induced this tuning by

clamping the representation of seen stimuli at or near the top

of a processing hierarchy and then implementing an inference

operation that roughly corresponds to ‘‘vision in reverse.’’ As ex-

pected, we found that units at the clamped level imparted their

tuning properties to units in levels below. Based on these ana-

lyses, we made the specific prediction that imagined spatial fre-

quencies encoded by human brain activity in low-level visual

areas would be reduced relative to seen spatial frequencies,

that the size of the reduction would be determined by tuning to

seen spatial frequencies in a higher-level visual area, and that

low-level areas would integrate information over larger regions

of imagined space than visual space.

To test our predictions, we conducted an fMRI experiment in

which subjects viewed and then imagined hundreds of spatially

varying naturalistic stimuli. We then used brain activity to esti-

mate independent visual- and imagery-encoding models. These

encoding models accurately predicted brain responses to both

seen and imagined stimuli and enabled accurate decoding of

their position and content. They also revealed, for every voxel,

tuning to seen and imagined spatial frequencies, as well as the

location and size of receptive fields in visual and imagined space.

Voxels in visual areas V4 and above (e.g., in the intraparietal sul-

cus) had relatively low spatial frequency preferences and large,

foveally concentrated receptive fields during both imagery and

vision. Remarkably, voxels in visual areas V1–V3 appeared to

inherit these encoding properties during imagery, showing pref-

erence for lower imagined than seen spatial frequency and larger

andmore foveal receptive fields in imagined than in visual space.

These results confirmed our predicted reduction in spatial fre-

quency and enlargement of receptive fields, thus linking mental
2212 Current Biology 30, 2211–2224, June 22, 2020
imagery in the human brain to the powerful computational abili-

ties of generative networks.
RESULTS

A Deep Generative Network Exhibits Distinct Codes for
Seen and Mental Images
We considered activity patterns in a deep generative network

specified by a hierarchy of L processing levels with feedforward

and feedback connections. The lowest level (level 0) of the

network analogized the retina. Levels above analogized func-

tionally distinct visual areas (e.g., V1, V2, V3, and so on; see

nodes in Figure 1A). We modeled vision and mental imagery as

distinct input configurations of this network and used activity

patterns in the network to derive qualitative predictions about

activity patterns in the brain.

During vision, the retina is activated by a visual stimulus s. Let rk
be an activity pattern at a level k and mk be the expected activity

pattern at that level. We modeled vision in the generative network

by clamping the activity pattern at the lowest level to the visual

stimulus, rvis0 = s (‘‘vis’’ denotes vision). Because, in this case, s is

the only source of variation, the resulting expected activity pattern

at level l > 0 is specified by a forward transformation mvis
l =T0

l ½s�
that maps from level 0 (superscript) to level l (subscript). (Note

that we refer to T0
l as a forward transform only because it yields

an expected activity pattern ml as a function of the stimulus s.

Thebrain isof coursedynamic, andwe interpretml as theexpected

activity pattern at steady state and T0
l as incorporating the effects

of both feedforward and feedback connections between levels in

the network. See Method S1.1.4 for explicit analysis.)

During imagery experiments, the retinal stimulus is uninforma-

tive (e.g., a blank screen). We therefore modeled the visual input

during imagery by clamping activity at the sensor level to a null

pattern rimg
0 = 0. We assumed that subjects imagine by rein-

stating in a high-level brain area the expected activity pattern

that would have been evoked by seeing the imagined stimulus.

We modeled this mechanism by clamping the activity in the

network at a level higher than l, say l +d, to its expected activity

pattern during vision, r img
l +d =mvis

l +d (‘‘img’’ denotes imagery). Now,

the clamped activity pattern in level l +d is the only source of vari-

ation, so the resulting expected activity pattern at level l is spec-

ified by a feedback transformation m
img
l =T

l +d

l mvis
l +d

� �
that maps

activity at level l +d (superscript) to activity at level l (subscript).

This feedback transformation is the operation in our model that

most closely resembles ‘‘vision in reverse.’’

Because of the hierarchical structure of the network, the imag-

ery activity pattern m
img
l can be re-written as an explicit function

of the stimulus s (see Method S1.1.2 for derivation):

m
img
l = T

� l +d

l +Tl
l +d|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Ul; l +d

+T0
l ½s�: (Equation 1)

This expression reveals how the expected imagery activity pattern

m
img
l differs from the expected visual activity pattern mvis

l =T0
l ½s�.

The difference is specified by the distortion Ul;l +d, which can be

construed as an ‘‘echo,’’ because Tl
l +d maps the expected visual

activity pattern at level l into the abstract representation at the

clamped level l +d and then T
l +d

l maps it back to level l. The
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Figure 1. A Deep Generative Network Exhibits Distinct Codes for Seen and Mental Images

(A) The visual system as a deep generative network specified by a hierarchy of processing levels (circles; rl denotes an activity pattern) and feedforward and

feedback connections (gray arrows). During vision, the expected visual activity pattern at a processing level, say l +d, is determined by a transformation T0
l +d (long

blue arrow) of activity (denoted s for stimulus) at the sensor level 0 (eye). T0
l +d is equivalent to a composition of transformations (shorter blue arrows) of activity

patterns between intervening levels. During imagery, s= 0, but at least one processing level is clamped to its expected visual activity pattern (rl +d = mvis
l +d in this

example; red box). Expected imagery activity patterns beneath the clamped level (e.g., mimg
l ) differ from their visual activity patterns by a transformation, U, from

the current to the clamped level (Tl
l +d, shortest blue arrow) and from the clamped level back (T

l +d

l , orange arrow).

(B–D) In silico experiments on a deep generative network illustrate the predicted effects of U on brain activity patterns during mental imagery.

(B) Signal (top), noise (bottom), and signal to noise (right) during imagery relative to vision at each processing level (x axis). Changes are expressed on a power-of-

2 logarithmic scale. The strength of the effect depends upon the processing level that is clamped during imagery (curves illustrate three different clamping levels;

see legend).

(C) Top row shows population tuning to spatial frequency (log2½cyc =stim�, x axis) for vision (blue) and imagery (orange) for units at each level in the network when

the top level of the network is clamped (dashed box). Bottom two rows show receptive fields (RFs) for individual units at each level of the network (circle radius is

one SD of Gaussian RF; circle color scales with radius) for vision (middle) and imagery (bottom).

(D) For each level of clamping, units below the clamped level exhibit lower spatial frequency preference (top), larger RFs (bottom), and lower eccentricity (right)

during imagery relative to vision.

See Figure S1 for additional information.
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encoding of s during imagery at level l is thus likely to be limited by

the encoding of s at level l +d during vision.

For practical applications, high-level representations in deep

generative networks are often optimized to give near-lossless

stimulus reconstruction. However, in high-level visual areas,

brain activity can be quite invariant to many aspects of stimulus

variation—an inevitable consequence of forming abstract repre-

sentations that are useful for cognition [35–37]. Thus, a predicted

effect of Ul;l +d was that low-level visual areas should encode

variation in mental images with less precision than seen images.
To illustrate this effect, we performed in silico vision and imag-

ery experiments on a specific generative network that embodied

a deep latent Gaussian model [24, 38] of natural scenes. We im-

plemented a network with linear connections between process-

ing levels in order to obtain exact solutions for the mean activity

patterns during imagery and vision. Neural units with complex-

like responses were modeled by combining pairs of network

units under a sum-of-squares operation (see Method S1.1.7 for

details). Although processing in the human visual system un-

doubtedly involves more complex nonlinearities, this simple
Current Biology 30, 2211–2224, June 22, 2020 2213
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model was sufficient to capture the basic tuning properties we

analyzed in our subsequent human neuroimaging experiment.

We first trained the generative network to optimize the log-like-

lihood of natural scenes in a large image database. A unique and

essential aspect of our approach is that the training objective

also constrained the network to exhibit brain-like responses

to visual stimulation. Units at higher levels of the network

were encouraged to exhibit lower spatial frequency preference

[33, 34], a more steep receptive field size-eccentricity relation

[30, 32, 39, 40], and greater foveal coverage [32, 41] during vision

than units at lower levels. We emphasize that these constraints

were placed on activity generated by the network during vision

only. No explicit constraints were placed upon the activity gener-

ated by the network during imagery, and imagery activity pat-

terns played no role in training the model.

Once training was complete, we generated a large corpus of vi-

sual and imagery activity patterns in response to a new set of nat-

ural scenes. From these activity patterns, we first estimated signal

amplitude, noise, and their ratio (SNR) during vision and imagery.

Signal amplitude during imagery was attenuated relative to

signal amplitude during vision at levels below the clamped level

(Figure 1B, top left), and the amount of attenuation depended

upon distance from the clamped level. Attenuation of signal

amplitude was a direct and obvious consequence of clamping

the lowest level to 0 during imagery.

Interestingly, noise was reduced during imagery at all levels

(Figure 1B, bottom left). Reduction of noise is caused by clamp-

ing two levels during imagery (i.e., the lowest level plus one

higher level) instead of just one (i.e., the lowest level alone).

This additional clamping reduces the number of random vari-

ables in the network and therefore reduces noise.

SNR during imagery was attenuated relative to SNR during

vision at levels below the clamped level (Figure 1B, right). As

with signal amplitude, the amount of attenuation depended

upon distance from the clamped level. Attenuation of SNR

occurred because the fixed reduction in noise during imagery

at all levels was small relative to the attenuation of signal ampli-

tude in lower levels.

We then analyzed visual and imagery responses to estimate

distinct spatial frequency tuning functions and receptive fields

for each unit in the generative network. As anticipated, tuning dur-

ing imagery was very different from tuning during vision. Spatial

frequency preference was reduced, relative to vision, for units

below the clamped level (Figures 1C and 1D, top). Receptive field

sizes were larger, and receptive field centers were shifted toward

the fovea (Figures 1C and 1D, bottom). Thus, tuning to imagined

features at lower levels more closely resembled tuning to seen

features at the clamped level. Like SNR, the size of these changes

increased with distance from the clamped level, so that the effect

of Ul;l +d was strongest in the level furthest below the clamped

one. Consequently, by clamping higher in the hierarchy, the ef-

fects became stronger and more widespread; by clamping lower,

the effects become weaker and restricted only to the lowest pro-

cessing level (Figures 1B and 1D).

Imagery-Encoding Models Link Brain Activity to
Imagined Stimuli
To test these predictions, we developed a method for inferring

how mental images are encoded in human brain activity
2214 Current Biology 30, 2211–2224, June 22, 2020
patterns. In visual neuroscience, the encoding of stimuli in brain

activity patterns is revealed by visual-encoding models [18, 22,

30, 42–44]. Formally, the visual-encoding model is specified by

a forward transformation from a stimulus to an expected visual

activity pattern (e.g., mvis
l =T0

l ½s�). The transformation determines

the visual features (e.g., spatial frequency) that are extracted

from the stimulus and encoded into the expected activity

pattern. It also describes spatial sensitivity to features in the

form of a visual receptive field.

Formulating an imagery-encoding model that would reveal

tuning and spatial sensitivity to imagined features has been a

formidable conceptual challenge because imagery activity is

not driven by a measurable stimulus. However, an important

implication of Equation 1 is that, if visual activity is reinstated

somewhere in the network, then the imagery activity pattern

m
img
l can be expressed as an encoding of the stimulus s, even

though s is not seen during imagery. Thus, if a set of known stim-

uli are imagined, it should be possible to use those stimuli to

construct imagery-encoding models. Once constructed, these

imagery-encoding models could be compared to visual-encod-

ing models to test for differences in the encoding of seen and

imagined stimuli. This comparison should reveal the distortion

effect of Ul;l +d.

To construct imagery-encodingmodels, we used 7-Tesla fMRI

to measure whole-brain blood-oxygen-level-dependent (BOLD)

activity as human subjects viewed and then in separate scans

imagined 64 pictures they had memorized prior to the experi-

ment (Figure 2A). Pictures depicted a range of natural objects,

artifacts, humans, and animals (Figure 2B). On each trial, a small

6-letter cue at the center of the display indicated the picture to be

displayed (imagined). The color of the cue indicated the position

of the seen (imagined) picture. All pictures were displayed (imag-

ined) at one of 8 possible positions (Figure 2C). The 8 different

positions were delineated with colored brackets that were all

visible at all times throughout both visual and imagery scans.

Thus, subjects saw (imagined) 64 pictures at 8 positions each

for a total of 512 distinct seen (imagined) stimuli across the

viewing (imagery) scans. Viewing and imagery scans alternated

during each experimental session. Subjects were instructed to

maintain fixation on the small central cue or dummy cue at all

times.

We estimated distinct voxelwise visual and imagery encoding

models [22] from activity measured during viewing and imagery

sessions, respectively (Figures 3 and S2). The visual-encoding

model for each voxel specified tuning to seen spatial frequency

and a receptive field in visual space. The imagery-encoding

model for each voxel specified tuning to imagined spatial fre-

quency and a receptive field in imagined space.

Imagery-Encoding Models Accurately Predict Brain
Activity during Mental Imagery and Identify Mental
Images
To validate visual-encoding models, we used them to predict

brain activity evoked by stimuli not included in the training set.

Visual-encoding models made accurate predictions of brain

activity throughout the visual cortex up through lateral occipital

cortex (LO) in the ventral stream and intra-parietal sulcus (IPS)

in the dorsal stream (Figures 4A, 4B, and S6). We confirmed

that visual receptive fields exhibited expected retinotopic



Figure 2. Stimulus Presentation and Timing
(A) Top: the stimulus displayed on the viewing screen during vision runs. Second from top: enlargements of the cues visible during both vision and

imagery runs are shown. Third from top: the display during imagery runs is shown. Bottom: timing of stimulus on- and offset and interstimulus interval ðDtisiÞ is
shown.

(B) All 64 individual object pictures viewed and imagined during the experiment.

(C) An object picture displayed in each of the 8 positions bounded by the framing brackets.

(D) A superposition of all 64 object pictures showing the visual field coverage of the stimuli.
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mapping (Figures S5A and S5B) and size-eccentricity relation-

ships across distinct visual areas (Figure S5C).

To validate imagery-encoding models, we used them to pre-

dict brain activity during imagery of stimuli not included in the

training set. Predictions made by imagery-encoding models ex-

ceeded a cross-validated threshold on accuracy for many voxels

in all visual cortical areas considered here (Figures 4A–4C; Table

S1; for subsequent analyses, we used only above-threshold vox-

els that, additionally, did not respond to the cue—see Voxel

Selection in STARMethods). Remarkably, cross-prediction ana-

lyses (Figure S7) revealed that imagery-encoding models were

even able to accurately predict activity during vision.
Importantly, predictions of the imagery-encoding models in

all regions of interest (ROIs) were accurate enough to identify the

position of (Figure 4D) and the picture in (Figure 4E) the imagined

stimuli. This result confirmed that subjects had indeed performed

the instructed imagery task. Moreover, accurate identification of

imagined pictures could not have been possible if variation in

spatial attention, eye position, or visual cues were the determi-

nants of imagery-encoding model prediction accuracy, allowing

us to rule out these potential confounds. These results licensed

us to inspect imagery- and visual-encoding models for evidence

of the predicted differences in the encoding of seen and mental

images.
Current Biology 30, 2211–2224, June 22, 2020 2215



Figure 3. Data and Procedures for Estimating Visual- and Imagery-Encoding Models

Whole-brain fMRI (7T) measured blood-oxygen-level-dependent (BOLD) activity as subjects viewed (top left) or imagined (top right) 64 unique pictures at 8

distinct positions. Unlike vision runs, pictures were not displayed during imagery runs; rather, subjects imagined the picture associated with the cue in the position

indicated by the cue color. Encodingmodels were trained (central diamond) separately using vision and imagery training data (top half), respectively, resulting in a

distinct visual-encoding model (vEM) (blue box) and imagery-encoding model (iEM) (orange box) for each voxel. Each vEM/iEM (consisting of an estimated

receptive field and spatial frequency tuning curve) was used to predict activity in response to held-out stimuli. Predictions were compared to measured vision/

imagery brain activity (k-fold cross-validation, k = 16, bottom half) to produce a vEM/iEM prediction accuracy score (Pearson correlation) for each voxel. See

Figure S2 for additional information.
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Imagery-Encoding Models and Brain Activity Reveal a
Hierarchical Progression of Prediction Accuracy,
Signal, and Noise
Having validated the imagery-encoding models, we compared

their prediction accuracy, tuning functions, and receptive fields
2216 Current Biology 30, 2211–2224, June 22, 2020
to visual-encoding models across areas in the visual cortical

hierarchy.

We expected that the prediction accuracy of the visual- and

imagery-encoding models would be closest to parity in high-

level visual areas, because our premise is that visual activity
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Figure 4. Imagery-Encoding Models Accurately Predict Brain Activity during Mental Imagery and Identify Mental Images
(A) Joint histogram (green) andmarginal histograms of prediction accuracy for imagery- (orange) and visual (blue)-encoding models across all voxels for subjects

1–3. The iEM made accurate predictions of imagery activity (Pearson correlation R0:16; p < 0.001; dashed gray lines) in all subjects.

(B) Prediction accuracy (color bar) of the vEM mapped on the flattened cortical surface.

(C) iEM prediction accuracy.

(D) Imagined position identification. Percentage (500 trials) of correct pairwise identifications (y axis; colored shading indicates ±SE; gray shading indicates

statistical significance threshold of p < 0.01; permutation test) for subpopulations of 500 voxels (markers on curves) from the indicated visual area. Identification is

correct when the brain activity pattern predicted by iEMs for the true imagined position is more correlated to the measured brain activity pattern than the pattern

predicted by the iEMs for a randomly selected position. Subpopulations are ordered along the x axis according to the lowest iEM prediction accuracy among all

voxels in that subpopulation.

(E) Imagined object identification. Format is as in (D). Identification is correct when the brain activity pattern predicted by iEMs for the true imagined object is more

correlated to the measured brain activity pattern than the pattern predicted by the iEMs for a randomly selected object.

See Figures S6 and S7 for additional data.
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patterns are faithfully reinstated in one or more of these areas

during imagery. In agreement with our expectations, we found

that the prediction accuracy of imagery-encoding models

monotonically approached parity with the prediction accuracy

of visual-encoding models with ascent from V1 toward IPS

(Figures 5A and 5B for subject 1 and Figure S3 for all subjects).

Visual areas in IPS are at the highest level of visual processing

for which our visual-encoding models generated accurate pre-

dictions (Figure S6).

The progression of relative encoding model prediction ac-

curacy matched the progression of SNR (Figure 5C). As pre-

dicted (Figure 1B), SNR reduced with descent toward V1.

The attenuation of SNR during imagery in the brain tracked

an attenuation in signal amplitude (Figure 5D), although noise

was uniformly reduced during imagery at all processing levels

(Figure 5E), again in agreement with our predictions (see

Figure 1B).
Differences in Tuning to Seen and Imagined Spatial
Frequency
As predicted (Figure 1D), preferred imagined spatial frequency

decreased relative to preferred visual spatial frequency with

descent toward V1 (Figure 6). Consistent with our analysis of

generative feedback, this decrease had the effect of bringing

the preferred imagined spatial frequency in all visual areas close

to the preferred seen spatial frequency in higher areas (i.e., V3A/

B and IPS; see Figure 6D). Unlike encoding model prediction ac-

curacy, loss of SNR in early visual areas cannot account for these

effects (Figure S4B).

Differences in Receptive Field Size and Location for
Seen and Imagined Space
We predicted that imagery receptive fields should be increas-

ingly dilated and displaced toward the fovea relative to visual

receptive fields with descent toward V1 (Figure 1D, bottom two
Current Biology 30, 2211–2224, June 22, 2020 2217



Figure 5. Hierarchical Progression of Imagery-Encoding Model Prediction Accuracy, Signal, and Noise

(A) Relative vEM and iEM accuracies (2D color map) for each voxel projected onto the inflated brain surface (center) for subject 1 (see Figure S3 for data from all

subjects). Surrounding joint and marginal prediction accuracy histograms (format as in Figure 4A) show progression of relative iEM/vEM prediction accuracy

(slope of best linear fit, g; purple line) across indicated visual areas.

(B) Distance of relative iEM/vEM prediction accuracy from parity ðg�1Þ for individual subjects (bars) and all subjects combined (yellow curve).

(C) Median signal-to-noise ratio ðSNRÞ for imagery activity relative to visual activity. See Figure S6 for cortical maps of SNR.

(D and E) (D) Relative signal, S (i.e., activation amplitude) and (E) relative noise, N. These signal and noise results qualitatively match in silico results in Figure 1B.

See also Figure S7.
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panels). After confirming that visual receptive fields conformed

to known anatomical and spatial organization and size-eccen-

tricity relationships (Figure S5), we compared the size and loca-

tion of the visual receptive fields to those of imagery receptive

fields. In V1, imagery receptive fields were larger (Figures 7A

and 7B) and more foveal (Figures 7A, 7C, and 7D), relative to

vision for each subject. Consistent with predictions, evidence

for differences in receptive field eccentricity and size weakened

with ascent toward high-level visual areas.

DISCUSSION

The observed differences between visual and imagery activation

amplitude, noise level, SNR, encoding model prediction accu-

racy, spatial frequency preference, receptive field location, and

size all offer novel support for the hypothesis of distinct brain
2218 Current Biology 30, 2211–2224, June 22, 2020
activity codes for seen andmental images. Using a simple model

of visual and imagery activity in a generative network, we have

shown that these differences can be explained as the result of

generative feedback from a clamped, high-level representation.

We now discuss some implications and alternative explanations

of our results.

Clamping
Weargue that the similarity between imagery and vision is limited

by the hierarchical level at which activity patterns are clamped. If

clamping occurs in the brain, it need not be limited to a single

brain area and probably has dynamics that our work sheds no

light on. Nonetheless, our results localize brain activity during im-

agery that is consistent with our notion of clamping.

At and above V4, differences in spatial frequency tuning and

receptive field attributes during mental imagery relative to vision
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Figure 6. Differences in Tuning to Imagined and Seen Spatial Frequency

(A) Top: visual (blue) and imagery (orange) spatial frequency tuning curves for several individual voxels. Bottom: population tuning curves for voxels in V1 with an

accurate iEM or vEM are shown.

(B) Top: population tuning curves during vision for all voxels in the indicated area that have an accurate vEM. Bottom: population tuning curves during imagery for

voxels that have an accurate iEM are shown. Populations in top (blue circle in Venn diagram) and bottom (orange circle) plots are overlapping, but not identical.

(C) Population tuning curves for all voxels in the indicated area that have an accurate vEM and iEM (i.e., a completely overlapping. population of voxels). All

subsequent panels use this population.

(D) Peak spatial frequency of tuning curves in (C).

(E) Difference between peak spatial frequency during imagery and vision for individual subjects (bars) and all subjects combined (yellow curve). The red shaded

area indicates significance level p < 0.01 (permutation test) for combined subject data (yellow curve). Asterisks indicate significant difference from null value (red

line; p < 0.01; permutation test); shading on curves indicates ±SE. Compare to in silico results in Figure 1D (top).

See Figure S4 for control analyses. See Table S1 for number of voxels per ROI per subject for this analysis.
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were much weaker than in areas lower in the hierarchy. Voxels in

IPS exhibited the strongest signal and highest SNR during imag-

ery (Figures 5C and 5D) and showed little evidence for any differ-

ences in the encoding of seen and mental images (Figures 6

and 7). A more fine-grained analysis (Figure S3) showed a trend

of decreasing prediction accuracy for both the imagery-encod-

ingmodels (iEM) and the visual-encodingmodels (vEM) with pro-

gression from IPS0–5. Remarkably, in IPS0/1, the iEM predicted

visual activity as accurately as the vEM. In IPS2–5, neither model

accurately predicted either imagery or visual activity.

We foundmixed evidence for engagement of prefrontal cortex

during the specificmental imagery task used here. SNRwas high

(relative to vision) for one subject and low for another (Figure S6).

The iEM and the vEM did not accurately predict imagery or visual

activity in prefrontal cortex.

In all subjects, ventral stream areas immediately anterior to V4/

LOexhibited relativelyhighSNRduring the visual task, but not dur-

ing imagery (Figure S6). Further anterior, there was, as with pre-

frontal cortex, mixed evidence for engagement during imagery.

These findings isolate IPS0/1 as a region in high-level cortex

where our analyses of brain activity fail to distinguish between

imagery and vision. Thus, our results point to IPS0/1 as the likely

source of ‘‘clamped’’ activity in this particular imagery experi-

ment. Previous findings support engagement of parietal areas

during imagery [2, 45]. Additional studies with more subjects

and, ideally, varying imagery tasks will be needed to confirm

the generality of this finding.
Our approach assumes availability of a predictive, image-

computable, visual-encoding model. Future work will require

the development of models that, to our knowledge, currently

do not exist (e.g., for prefrontal cortex) or require more

samples of imagery activity than we acquired in this experiment

(e.g., for anterior ventral stream areas) and may possibly require

acquisition at higher spatial resolution (i.e., voxel volume

< 1:6mmð Þ3).

Alternate Explanations
Here, we consider alternate explanations of our results.

Failures of Imagination

When asked to imagine a specific remembered picture of, say, a

baby, subjectsmight have thought of the general category ‘‘baby’’

without imagining details of the remembered picture.Might the re-

ported reduction in imagined spatial frequency preference be ex-

plained as a consequence of such failures of imagination?

In our model, imagination failure can be equated with the level

of clamping. Clamping high under-specifies mental images,

even if the clamped activity pattern faithfully reinstates an ex-

pected visual activity pattern. Better imaginers, or ones imag-

ining simpler stimuli, might clamp lower than the subjects in

our study. This could induce imagery activity patterns in low-

level visual areas that have greater overlap with corresponding

visual activity patterns than we observed. Although our theory

accommodates variable clamping levels (see Figures 1B and

1D), the overlap between imagery and visual brain activity in
Current Biology 30, 2211–2224, June 22, 2020 2219
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Figure 7. Differences in Receptive Field Location and Size between Vision and Imagery

(A) Example visual and imagery RFs for single voxels.

(B) Average signed change in RF size from vision to imagery. Positive (negative) values indicate dilation (shrinkage). Compare to Figure 1D (bottom left).

(C) Average signed magnitude of shift in RF location from vision to imagery. Negative values indicate a shift toward fovea. Compare to Figure 1D (bottom right).

The red shaded area in (B) and (C) indicates significance level p < 0.01 (permutation test) for combined subject data (yellow curve). Asterisks indicate significant

difference from null value (red line; p < 0.01; permutation test); shading on curves indicates ±SE.

(D) Orientation and magnitude (line segments) and direction (color wheel at far left) of RF location shifts (same voxels as in B and C) from vision to imagery.

See Figure S5 for additional data. See Table S1 for number of voxels per ROI per subject for this analysis. See also Figure S4.
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low-level visual areas is consistently weaker than in high-level vi-

sual areas [2, 17, 46, 47].

Adversarial Mental Imagery

Perhaps imagery cues trigger representations stored as associa-

tive memories in V1. Feedforward activity could then act like an

adversarial image [48] that incompletely encodes details of the

remembered picture but nonetheless results in the ‘‘right’’ ab-

stract representations at higher levels of the network. In this

case, generative feedback would not be needed for imagery.

This adversarial explanation has two flaws. First, our imagery

task did not depend entirely on associative memory. Subjects

did not memorize all 512 stimuli; rather, they memorized 64 pic-

tures and a rule linking the color of cues to the position of pic-

tures. We are unaware of evidence for such rule-based process-

ing in human V1. Second, the adversarial explanation would

require weak signals triggered in V1 to become amplified as

they ascend the visual hierarchy. It is unlikely that a network

that amplified signals in this way would be stable.

Weak Vision

The ‘‘weak vision’’ model assumes that vision and imagery are

equivalent up to a bound on signal amplitude: mimg = εmvis + h,

where ε < 1 and h is additive noise. This model is implied when

visual-encoding models are used to predict, decode, or recon-

struct mental imagery [10–13]. Our work shows that imagery

may also induce tuning and receptive field changes at the level

of single voxels. Thus, the lack of spatial specificity in recon-

structions of mental images, relative to seen images, may be a
2220 Current Biology 30, 2211–2224, June 22, 2020
consequence not only of noisy signal but also of changes in

spatial sensitivity within cortical localities no larger than the vol-

ume of the voxels in this study ðð1:6mmÞ3Þ. This implies a limit on

the specificity of mental image reconstructions that is indepen-

dent of the abundance or quality of data. Our analysis further im-

plies that this limit is imposed by the nature of visual

representation.

Vision in Reverse

The ‘‘vision in reverse’’ (VIR) model of voluntary mental imagery

holds that imagery is a form of sensory-memory recall [28]. Under

this model, activity in high-level visual or mnemonic brain areas

servesas theeffective sourceof input tovisual cortex. This intuitive

model of mental imagery is generally consistent with our formal

model. However, the VIR model does not make predictions about

tuning to imagined featuresor receptive fields in imaginedspace. It

does not specify whether imagery and vision are supported by a

common or by separate neural populations [47], although our re-

sults support the former scenario. It does not localize the source

of the ‘‘reversed’’ activity, although our results provide rather spe-

cific localization information (see above). Finally, the VIR model

does not specify the computational significance of imagery,

although our work argues that imagery may be interpreted, like

vision, as a form of inference in a generative network.

Imagery and Attention
Previous fMRI studies have shown that changes in signal

amplitude, receptive fields, and tuning are also induced by
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variations of attentional state [32, 49–54]. Consistently, these

effects are small or insignificant in V1 and V2 but large and sig-

nificant in higher visual areas. In contrast, in our study, the

largest differences between imagery and vision were seen in

V1 and V2. These differences weakened with ascent of the vi-

sual hierarchy. In addition, in our study, decreased eccentricity

(of imagery receptive fields [RFs] relative to visual RFs) was

accompanied by an increase in RF size, whereas in an at least

one attention study [54], decreased eccentricity was accompa-

nied by a decrease in RF size. Thus, it is clear that previously

observed attention effects were not replicated in our study.

Although some modeling work [55–56] suggests that inference

in a generative network can explain many of the effects of

attention, it is very likely attention calls into play mechanisms

that do not seem to explain our imagery results. The connec-

tions between imagery and attention are an important topic

for future work.

Mental Imagery versus Generative Networks in Artificial
Intelligence
Mental imagery is subjectively vague, and we have shown that

mental images are encoded with lower spatial frequency prefer-

ence and larger receptive fields than seen images. However,

samples drawn from generative networks developed for AI appli-

cations (e.g., [57]) can be quite detailed. What might explain this

discrepancy?

Image synthesis in generative networks is performed by

sampling from a distribution over images [57–59]. However,

we explicitly do not equate such samples with mental imag-

ery. We model the activity induced by clamping a relatively

high processing level to the expected activity pattern that

would have been evoked had a mental image been seen,

while clamping activity at the sensor level to what is actually

seen with the eyes during imagery (i.e., a blank screen). This

is a principled choice because the retina (analogized by the

sensor level in our model) receives no feedback and is there-

fore always clamped—even during imagery.

Generative networks developed in AI learn representations

that are importantly different from representations in the brain.

The brain maintains a relatively deep hierarchy of increasingly

invariant representations [36]. The visual responses of our gener-

ative network reflect the most basic aspects of this invariance by

exhibiting decreasing spatial frequency preference and increas-

ingly large receptive fields with ascension of a network hierarchy.

As we show in Figure S1, our generative network must exhibit

these basic properties of the brain’s visual responses in order

to reveal the kind of tuning to imagined features that we observe

in the brain.

In contrast, generative networks in AI often consist of only a

single level of latent representation that is mapped to the sensor

level through a nonlinear deterministic mapping. Although

learning deeper hierarchies of representation in generative net-

works is an ongoing challenge in AI [29, 60], a hierarchy of

brain-like latent representations is evidently not needed to

generate detailed image samples. This suggests that optimizing

the learning objective used to train many generative networks is

not sufficient to learn brain-like representations. Our results

further suggest that an objective that leads to deeper and

more brain-like hierarchies of representation may come at the
expense of less-detailed image samples [61,62] or that the de-

tails need to be ‘‘dreamed up by sampling’’ [63].

Mental Imagery and Inference
We have provided evidence for a link between mental imagery

and generative networks. Considerable previous evidence

links generative networks to vision [26, 27, 64–67]. In visual

cortex, spontaneous dynamics [68], stimulus response nonlin-

earities [64, 69, 70], the encoding of prediction error [71, 72],

and the structure of visual representations in low-level [73]

and high-level [74] visual areas can be explained by modeling

vision as forward inference in a generative network that em-

bodies a probabilistic model of the visual world. Formally,

this means that activity patterns during vision ðr1;.; rLÞ are

sampled from the posterior distribution pðr1;.; rLjsÞ.
In our model, activity patterns during mental imagery can be

interpreted as samples from a related but importantly different

conditional distribution. In our simulations, activity patterns

that encode mental images are sampled from pðr1; .;

rL�1

��s = 0;rL =mvis
L Þ. Thus, clamping during imagery may be inter-

preted as probabilistic conditioning on a blank stimulus and a

reinstated sensory expected activity pattern. Imagery generation

may likewise be interpreted as sampling from this conditional

distribution the features encoded at intervening levels ðr1; .;

rL�1Þ.
This interpretation of mental imagery as inference supports

the intuition that we imagine to ‘‘see’’ the visual conse-

quences of visual predictions and memories. Our work thus

extends the relevance of the generative perspective on

vision. Previous results relating vision to inference have sup-

plied evidence that representations in biological visual sys-

tems are adapted to the structure of the visual environment

[68, 69, 73]. Other studies linking the related concept of pre-

dictive coding to vision have supplied evidence that knowl-

edge of the structure of the visual environment can be com-

bined with contextual information to represent the visual

structure of occluded scenes [75] and of illusory contours

[76]. The current results provide additional compelling evi-

dence that highly structured representations can emerge

independently of retinal input [68, 77], allowing the visual sys-

tem to reason coherently about the visual environment, even

when there is nothing to see.
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FSL (5.0.9) [78] https://fsl.fmrib.ox.ac.uk/fsl/

AnalyzePRF (1.1) [39] https://kendrickkay.net/analyzePRF/

GLMDenoise (1.4) [79] https://kendrickkay.net/GLMdenoise/

Blender (2.78) The Blender Foundation https://www.blender.org/

Freesurfer (6.0.0) [80] https://surfer.nmr.mgh.harvard.edu/

PyCortex (1.1dev0) [81] https://github.com/gallantlab/pycortex

Custom Python 2.7 code This article https://github.com/styvesg/imagery-master
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources/code should be directed to the Lead Contact, Thomas Naselaris (tnaselar@musc.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Python source code and notebook examples generated during this study are available on GitHub at https://github.com/styvesg/

imagery-master. Neural datasets and stimuli have not been deposited in a public repository due to file size but are available from

the Lead Contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Three healthy adult subjects (2 females; age range: 26-40, mean age = 35.33) with normal or corrected-to normal vision participated

in the study. Two subjects were authors. All subjects gave written, informed consent approved by the Institutional Review Boards at

the University of Minnesota before participating in the study.

METHOD DETAILS

Deep generative network
The generative network used in the numerical illustrations in Figure 1 was a deep latent Gaussian model [24, 38]. The network con-

tained L= 5 layers with 1736, 1352, 1096, 840 and 584 units, respectively. Collectively, the network specifies a distribution over the

activities of units at each level pðr0;.; rLÞ. We assume this joint distribution factors across levels

pðr0; r1;.rLÞ = pðrLÞ
YL�1

l = 0

pðrljrl + 1Þ

where the conditional distribution pðrljrl +1Þ is Gaussian and has a mean that is determined by a linear transformation of the activity

pattern in the level above it, mljl +1 =Ul +1rl + 1, whereUl +1 is a set of connection weights between level l and level l + 1. The prior pðrLÞ is
assumed to have zero mean and a diagonal covariance matrix. We assumed linear connections in order to take advantage of exact

inference, and to expose feedback effects that did not depend upon a specific nonlinear interaction between levels. Further details on

the structure of the model are provided in Methods S1.

The connection weights between levels were learned by optimizing an objective function that maximizes a lower bound on the log-

likelihood of 50,000 small natural scenes, as well as the correspondence between units in the network and idealized neurons that

exhibited spatial frequency tuning functions and receptive field sizes similar to those observed in the human visual cortex. Details

on the constrained objective function and training algorithm are provided in Method S1.1.6. Details on the idealized neurons used

to train the deep generative network (DGN) are provided in Method S1.1.5.

Once trained, we obtained expected visual activity patterns at each level by computing the expectation of the posterior

distribution:
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l hEpðr1 ;.;rL jr0 = sÞ½rl�

where the stimuli s were drawn from a validation set.

We obtained expected imagery activity patterns at each level by computing the expectation of amodified posterior that was further

conditioned on a ‘‘clamped’’ high-level activity pattern:

m
img
l hEpðrl f0;kgjrk =mvis

k
;r0 = 0Þ½rl�

Formulas for calculating these expectations are provided in Methods S1.1.3 and S1.1.4.

Thisproceduregaveus10,000 imageryand10,000visual activitypatterns. Theseactivitypatternswere thensubjected to thesameanal-

ysispipelineasexperimentallymeasuredhumanbrainactivitypatterns.Detailsof theseanalysesareprovidedbelowand inMethodS1.1.8.

Experimental design and stimuli
The experimental scanswere organized into separate 10-minute runs, each an uninterrupted succession of trials duringwhichwhole-

brain BOLD activity was measured. Runs were of two types: vision runs and imagery runs. Each subject completed both vision and

imagery runs. During vision runs, stimuli were presented on a viewing screen and viewed by the subjects. During imagery runs stimuli

were not presented (only a cue was shown) on the viewing screen but were imagined by subjects (Figures 2A and 3). Stimuli were

presented by a NECNP4000 projector (10243768 resolution, 60Hz framerate) onto a rear projection screen. During all runs, subjects

fixated on a 6-letter cue (filling a 1.5� 3 0.4� rectangle) at the center of a gray stimulus field (16� 3 16�). Eight framing brackets with 8

distinct colors were displayed throughout each run. Each bracket bounded a different but overlapping portion of the stimulus field (8�

3 8�) that framed a seen (vision runs) or imagined (imagery runs) object picture. Framing brackets were visible at all times during all

runs and conditions. Cues were 6-letter descriptive abbreviations (e.g., ‘firtrk’ cued a picture of a fire truck, ‘ababie’ cued a picture of

a baby) and always appeared at the same location and with the same dimensions (Figure 2).

During vision runs (Figure 2A, blue panel and Figure 3, left panel), the central cue and an object picture were displayed simulta-

neously. Subjects were instructed to fixate the cue and passively view the object pictures. The picture-cue pair was presented for

a duration of 2 s and was followed by an inter-stimulus interval (ISI) during which no picture was shown and the 6-letter cue at center

changed to a dummy cue (‘‘XXXXXX’’). The duration of the ISI varied randomly from 1 TR (2 s) to j3TR where j was sampled from a

Poisson distribution (l= 0:4; z2 to 6s).

During imagery runs (Figure 2A, orange panel and Figure 3, right panel), subjects viewed the same display as during the vision runs

(i.e., the same cues, background, and framing brackets) except that the object picture itself was absent. Subjects were instructed to

fixate on the cue and mentally project the cued object onto the portion of the visual field framed by the bracket whose color matched

the color of the cue. For example, the cue ‘firtrk’ written in yellow cued the subject to imagine the fire truck picture in the upper left

corner within the yellow framing brackets. Subjects were instructed to imagine the object for the duration of the 2 s trial and to stop

imagining it when the object cue reverted to the dummy cue.

Objects (Figure 2B) were selected from the SUN labeled image collection [82] and were selected to span the 19 object categories

specified in Naselaris et al. [44]. Each object was extracted from its background using the object mask provided by the SUN data-

base. Masks were dilated by 10 pixels.

Eight unique object pictures were displayed during each run. Each object picture was displayed at each of the 8 framed locations

(Figure 2C), for a total of 64 unique stimuli in a run, which were repeated twice per run for a total 128 stimulus presentations per run.

There were 8 vision runs, for a total of 512 unique seen stimuli and 1024 stimulus presentations. There were also 8 imagery runs for a

total of 512 unique imagined stimuli, and 1024 unique acts of mental imagery.

Prior to each session subjects familiarized themselves with the experimental stimuli using a self-paced version of the imagery

experiment. Familiarization sessions halted when subjects felt confident that the 8 object pictures and associated 6-letter cues

were committed to memory. These sessions varied in duration from 10-20 minutes.

MR Acquisition parameters
7TMRI data was acquired at the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota. The experimental

fMRI runs were collected using a 7T Siemens Magnetom scanner and a Nova Medical head coil (CP Transmit / 32 channel receive

coil). Whole-brain functional data was acquired with a gradient-echo EPI sequence at a resolution of 1:6mmð Þ3: TR 2000 ms, TE

22.8 ms, FOV 1303130, Partial Fourier 7=8, 70 slices, GRAPPA R = 2, multiband acceleration factor 2, anterior-posterior phase

encode, transverse slice orientation.

Prior to experimental runs we collected a 1-mm T1-weighted whole-brain anatomical volume at 7T for all subjects. We also

collected whole-brain fieldmap phase and magnitude volumes for the correction of EPI spatial distortions [83].

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of signal-to-noise ratio
Signal amplitude for units in the DGNmodel was defined as the variance of the expected value of the activity across a given dataset

(i.e., ‘‘conditions’’). The noise level was estimated from the average of the variance of the activity across that same dataset. Thus, the

signal-to-noise ratio (SNR) per unit was
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SNRmodel =
var½m�conditions

avg½diag½S��conditions
; (Equation 2)

where m and S are the expected value and the covariance matrix of the activity in a given condition. This parallels the way that SNR is

estimated experimentally through bootstrapping the activation amplitudes over separate runs with the same condition. In this case,

the SNR is defined as

SNRexp =
var

�
avg½b�trial

�
conditions

avg
�
var½b�trial

�
conditions

; (Equation 3)

where b is the measured activation amplitude (beta value) and the subscript ‘‘trial’’ (bootstrap iteration) and ‘‘conditions’’ stands for

the dimension with which the average (variance) is taken over. Figure 1B illustrates the characteristic tendencies of the signal, noise

and SNR ratios derived from the solution of the trained DGN.

Data pre-processing
Functional image correction and alignment

Functional scans were corrected and aligned within subject only. For each run, time series motion correction was performed through

rigid alignment of all volumes to the middle volume (FSL MCFLIRT). Acquired fieldmaps were then used for spatial B0 distortion

correction (FSL FUGUE). Functional volumes were temporally resampled to correct for slice timing differences (FSL slicetimer).

Spatial transformations up to this pre-processing stage were then concatenated and applied to un-corrected and un-registered vol-

umes to minimize spatial resampling. An average of the time series from the run with the least amount of absolute movement was

selected as the reference image for rigid alignment between runs (FSL FLIRT). Any residual misalignment was reduced via non-linear

registration of all functional volumes to the same reference image (FSL FNIRT). Transforms for the last two registrations were concat-

enated and applied to the within-scan corrected images.

Time-series denoising and beta estimation

BOLD time-series modeling for each voxel in the corrected and registered functional volumes was performed using GLMdenoise [79]

(Canonical HRF, visual cortexmask for PC-selecting voxels, noise-pool threshold defined as 99th percentile ofR2 values, minimumof

700 voxels with highest R2 selected from visual cortex used to select number of principal components, 100 bootstrapping iterations).

For each voxel this procedure output an estimate of activation amplitude (beta value) per unique seen stimulus and an independent

estimate of activation amplitude per unique imagined stimulus. Activation estimates were bootstrapped to obtain confidence

intervals.

Surface reconstructions

Structural T1 volumes were skull-stripped and used to obtain surface reconstructions (Freesurfer). Flatmaps used for displaying re-

sults and drawing retinotopic regions of interest (see section Region of interest identification) were prepared with pycortex [81].

Briefly, T1-weighted volumes were passed to Freesurfer’s recon-all (version 6) for cortical reconstruction and segmentation, pial

and white-matter surface rendering, and cortical inflation. We then made manual edits to the segmentations to ensure optimal sur-

face quality. Digital cuts were made into the inflated surface using Blender (v2.78) and then processed by pycortex for flattening and

rendering. Functional data to be displayed on surfaces were rigidly aligned to the above processed structural volumes using FSL

FLIRT.

Region of interest identification

We conducted independent retinotopic mapping experiments to identify visual areas V1, V2, V3, V3a/b, V4, and LO. We utilized the

mapping stimuli and population receptive field estimation (analyzePRF) technique from Kay et al. [39] to construct angle and eccen-

tricitymaps for subjects 1 and 3. Similar retinotopicmapswere constructed using a standard traveling wave approach [84] for subject

2. Thesemaps were overlaid onto flattened cortical surfaces and imported into Inkscape where phase reversals and eccentricity pat-

terns were used to hand-draw continuous regions of interest (ROI) boundaries as described in Hansen et al. [85]. Ventral and dorsal

regions were delineated for V1, V2, and V3. Surface-defined ROIs were then transformed back to functional 3D volumetric space

using pycortex (get_roi_masks function with gm_sampler = ‘thick’). A cortical ribbon mask (adopted from Freesurfer’s earlier seg-

mentation) was prepared for each ROI.

To identify cortex within the intraparietal sulcus (IPS) functional volumes were registered to MNI 1mmð Þ3 standard space (FSL

FNIRT, 3mm warp resolution). ROI’s were then defined using published probabilistic maps of ROIs in volumetric standard space

[86]. These probabilistic maps were thresholded at 10%; any voxel belonging to multiple ROIs under this threshold was assigned

to the ROI for which it had the highest probability of membership. The registration transform was then inverted to bring these

ROIs from standard space back into individual subjects’ native spaces.

Encoding model design and analyses of parameters
The voxel-wise fwRF encoding model

Imagery encoding models and visual encoding models were estimated using the feature-weighted receptive field (fwRF) approach

[22] summarized in Figure S2. The fwRF is a voxel-wise encodingmodel, meaning that it can be used to predict activation in response

to arbitrary stimuli for each voxel in a functional volume. The predictions are generated according to the following separable linear

model:
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iðxÞjðyÞðstÞdxdy (Equation 4)

where br t is the predicted activity in response to image st and D is the total visual angle sustained by the image st. The discretization

depends on the resolution of the feature map under consideration such that i xð Þ= b 2x +Dð Þ=2Dc (likewise for jðyÞ) where D= D=nk is

the visual angle sustained by one pixel of a feature mapwith resolution nk3nk . The size, sf:p:f, of the Gaussian pooling field gð $Þ is tied
to the size of receptive field, sRF, through s2f:p:f + s2p:f: = s2RF where sp:f: is the size of the Gabor wavelet envelope for the feature being

pooled over (a graphical representation of these terms is shown in Figure S2). The fwRF model is an estimate, for each voxel, of a

spatial receptive field’s parameters and a separable visual feature tuning weight vectorw= ðw1; : : : ; wKÞ. The receptive field location

ðmx;myÞ and size sRF are estimated using a brute-force search over a grid of locations and sizes, while the parameters of the tuning

function are learned via gradient descent. See Figure S5 for an example of the retinotopic organization of these estimates.

In this study visual features were constructed byGabor wavelet transform of the visual stimuli at 4 uniformly distributed orientations

times 12 spatial frequencies (log-spaced between u= 0:35 and u= 11:0 deg�1) for a total of 48 features. Gabor wavelets spanned

4 s.d. of the Gaussian envelope and were designed to have one cycle per s.d. Receptive fields were optimized over a uniform

grid of 21321 receptive locations times 12 receptive field sizes (log-spaced between 0.22 and 8.75 degrees of visual angle).

Training and cross-validation

The fwRF was applied to vision and imagery datasets independently. Data from the visual runs were used to estimate the visual en-

coding models, while data from the the imagery runs were used to estimate the imagery encoding models. In both cases, the input of

the encodingmodels st during training is the exact visual stimulus that was presented during the visual experiment (including the cue).

All of the following details therefore apply to both instances of fwRF training.

Feature weights and receptive field parameters were estimated using a k-fold cross-validation procedure. For each fold, validation

subsets ðNval = 32Þwere sampled from theNtotal = 512 samples of activation per voxel. Each validation subset contained activation in

response to randomly sampled picture-locations that did not overlap across folds. For each fold, activation samples outside of the

validation subset were treated as training data used to estimate a fwRFmodel for each voxel. This processwas repeated k = 16 times

resulting in 16 distinct fwRF models for each voxel.

Estimation of the feature weights for each model was performed using stochastic gradient descent with a learning rate of 53 10�3

and with a batch size of 96 for a maximum of 100 epochs. 40% of the training data was held-out as an early stopping set. Parameter

updating halted early if the held-out loss began to increase. Estimation of the receptive field location and size was performed by

brute-force search over the minimum hold-out loss reached by all possible candidates on a grid (see Figure S2).

To estimate model prediction accuracy, predictions from the 16 distinct models for each activation in the corresponding validation

subsets were concatenated. A Pearson correlation coefficient between the model predictions and measured activations was calcu-

lated for each voxel. Prediction accuracy are shown in Figures 4 and 5. Error estimates on prediction accuracy values were obtained

by sampling 100 times with replacement the k = 16 models for each voxel and recalculating the correlation coefficient for each

sample.

We also developed a variant of the fwRFmodel that used ridge regression to optimize feature weights (instead of gradient descent).

This variant offers a significant reduction in run time and was therefore used to create the cortex-wide maps of model prediction ac-

curacy in Figures 5 and S6. The ridge parameter was selected from a range of 12 log-spaced value between 10�3 and 103 based on

validation accuracy on a holdout set size of 40%of the training data. The selected ridge parameter was such that the largemajority fell

within the extrema of the range above. We confirmed that results obtained with this variant were consistent with results obtained

using gradient descent.

Voxel selection

Maps in Figures 4B and 4C project onto a flattened surface the encoding model prediction accuracy of all gray matter voxels with

R10% chance of belonging to any of the visual areas defined in the probabilistic atlas of Ref [86].

A significance threshold on prediction accuracy (dashed gray lines in Figures 4A, 5A, and S3) was defined such that values more

extreme have p < 10�3 for a null distribution over prediction accuracy that assumed no relationship between the model predictions

and measured activities. This null distribution was built through 500 iterations of shuffling the model’s predicted activity over condi-

tions for each voxel and then measuring the correlation coefficient between this shuffled predicted activity and the corresponding

measured activity for that voxel. Unless otherwise specified, analyses of receptive field attributes and spatial frequency tuning

were applied only to voxels with a visual or imagery encoding model above this accuracy threshold (Pearson correlation coefficient

R0:16).

To ensure that our results did not reflect any response to the slight changes in hue and shape of the cuewith condition, the following

procedure was used to identify and discard any voxel that showed sensitivity to the 6-letter cues during either the imagery or the

visual runs.

The visual stimuli used to estimate each fwRF model included both the object picture and its associated cue. To test for sensitivity

to the cue, we calculated cross-validated prediction accuracy using input stimuli that contained either the cues or the object pictures

only. Voxels for which the cue-only stimuli resulted in above-threshold prediction accuracy for either the imagery or the visual
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encodingmodel were discarded from any analysis of receptive field attributes or feature tuning. Only voxels for which the picture-only

stimuli resulted in above-threshold prediction accuracy were retained for receptive field and feature tuning analyses.

Table S1 enumerates the number of voxels per ROI and subject that satisfied these conditions. In Figure 6B of the main text, we

retain voxels for which either the visual (top) or the imagery (bottom) encoding models had above-threshold predication accuracy. In

Figures 6C–6E we retain only voxels for which both the visual and imagery encoding models had above-threshold prediction

accuracy.

Figure S4A shows receptive fields of the discarded cue-responsive voxels. As expected, receptive fields tend to be small and are

concentrated at the center of the visual field where the cue was displayed.

Spatial frequency tuning

Spatial frequency tuning was determined using a feature weight dropout procedure [22]. To determine the tuning strength to spatial

frequency for each voxel, we first calculated the Pearson correlation coefficient ðrÞ obtained by using feature weights associated with

Gabor wavelets of a single spatial frequency alone (i.e., setting all weights to 0 except those belonging to feature maps generated

using Gabor wavelets of a specific frequency). The value of r2 was calculated for each spatial frequency and can be interpreted

as a percentage of variance explained [42] by that frequency. In order to compare voxels to each other we normalized these fre-

quency tuning curves to make them independent of the total variance explained. Thus, the tuning function was defined as the square

of r for each specific frequency divided by the sum of the square of these r’s over all frequencies (Figure 6A, top 3 plots, show ex-

amples for individual voxels). Thus, two voxels that show the same tuning profile, but different maximum explained variance would

have the same tuning curve. A tuning value of 0 for a given spatial frequency means that the associated feature maps explained none

of the variance in activation across stimuli; a tuning value of 1 means it uniquely explained all of the variance.

Averaging the tuning distributions of all voxels within a ROI produces a tuning distribution at the level of ROI. Averages (dots in

Figures 6A–6C) and error estimates were obtained by sampling with replacement 100 times the 16 validation subsets and associated

encoding models for each voxel and then averaging across all iterations and voxels in a single ROI.

Consistent with previous studies [33, 34] ROI-level tuning curves were found to empirically obey a log-Gaussian relationship. We

thus performed nonlinear regressions to fit curves of this form to each tuning curve (curves Figures 6A–6C). This fit was used to es-

timate the peak frequency values of the tuning curves (Figure 6D) and its shift (Figure 6E). The error estimate on the difference in peak

frequency between imagery and vision tuning curves takes into account the uncertainty in the fitting procedure as well as the uncer-

tainty in the ROI tuning points.

To obtain significance estimates for Figure 6E we tested the hypothesis of a non-zero difference between imagery and visual peak

spatial frequencies against the null hypothesis of no difference between peak frequencies. To construct the null distribution of peak

frequency shift, we randomly shuffled the ‘‘vision’’ or ‘‘imagery’’ designation of voxel-wise tuning and calculated the mean frequency

shift 1000 times. The region outside the red shaded area in Figure 6E indicates values with p < 0:01 for combined subject data. For

each subject individually, the points with p < 0:01 are displayed with an asterisk.

Figure S4B shows the spatial frequency tuning functions for all subjects and ROIs during vision and imagery (shown together for

subject 1 in Figure 6B). Figure S5A, bottom panel, demonstrates the cortical layout of peak spatial frequency during vision and

imagery.

Receptive field size and location

As described above, for each voxel we fit k = 16 independent visual encoding models, and k = 16 independent imagery encoding

models, each corresponding to a different training/validation split of the data. Thus, for each voxel we obtain 16 different estimates

of receptive field size and location. Results on differences in the location (Figures 7C and 7D) and size (Figure 7B) between imagery

and visual receptive fields were obtained by repeatedly sampling these estimates.

The colored lines in Figure 7D show the average (over all k samples per voxel) shift in receptive field location of individual voxels

from vision to imagery. Their color represent the inward polar angle of the shift. To construct the plots in Figures 7B and 7C we

sampled 1000 pairs of imagery and visual receptive field parameters at random from the k = 16 encoding models available for

each voxel in order to capture the variance of these samples. The bars in Figures 7B and 7C show the average shift over all sampled

pairs and voxels in each ROI per subject, and their error bars indicate one standard deviation of the distribution of shifts. The yellow

curve in Figures 7B and 7C shows the same measures for the combined subject data, with the shading representing one standard

deviation. Illustrations of receptive fields in Figure 7A show average receptive field locations and sizes over samples for individual

voxels.

To obtain the significance estimates displayed for all receptive field size and location results in Figures 7B and 7C we tested the

hypothesis of a non-zero mean difference between imagery and visual receptive field parameters against the null hypothesis of no

mean difference. To construct the null distribution, we performed the same sampling process as above with the addition of randomly

assigning the ‘‘imagery’’ or ‘‘vision’’ designation to each sampled value for each voxel in the indicated ROI. We then calculated the

mean difference between the receptive field parameters between each group. This process was repeated 1000 times, resulting in a

histogram of differences in mean receptive field parameters for each ROI. The region outside the red shaded area in Figures 7B and

7C indicates values at significance level p < 0:01 for combined subject data. For each subject individually, the observed values with

p < 0:01 are highlighted by an asterisk on the mean observed value.
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Seen and mental image identification
An important measure of the validity of an encoding model is how well it can discriminate target stimuli that correspond to the

measured activity from other ‘‘lure’’ stimuli [10]. The model-based decoding analysis is known as ‘‘image identification’’ [18]. Here

we used pairwise ‘‘hits’’ as our metric for identification accuracy. A ‘‘hit’’ occurs when the measured voxel activity pattern associated

with a seen or imagined target stimulus is more correlated with the predicted activity pattern associated with the target stimulus than

the predicted activity pattern associated with a lure stimulus. Identification accuracy for a given target stimulus is the percentage of

hits accumulated across all lure images.

Weperformed two distinct types of identification. Position identification was used to determine if the encodingmodels successfully

captured the way that object position was encoded in population activity. Similarly, object identification was used to determine if the

encoding models successfully captured the way that specific objects, independent of position, were encoded in population activity.

For both types of identification, the cue was not included as part of either the target or lure stimuli. Thus, model predictions did not

include any information about the cue (and we again emphasize that cue-responsive voxels were not included in this analysis, see

Voxel selection).

Both identification of locations and of objects was performed in two parts. First, half of the activation samples ð256Þ for each voxel

were randomly selected (but balanced such that all locations (objects) are represented in each set) to estimate a cross-validated pre-

diction accuracy score (Pearson correlation coefficient) for each voxel. We then ranked these voxels and selected a population of 500

voxels to calculate identification accuracy on the remaining half of the activation samples. To perform location (object) identification,

the measured and predicted activity patterns that corresponded to a single location (object) were concatenated across all 64 objects

(8 locations) and across the selected voxels. This produced 8 (64) series of concatenated predictions and measured values for loca-

tion (object) identification. We then evaluated the correlation matrix between all prediction series and measured series. The percent-

age of identification ‘‘hits’’ is then simply the fraction of entries for which the diagonal elements have a greater value than the other

entries in the row corresponding to the ‘‘lure’’ predictions.

To produce the curves shown in Figures 4D and 4E, the previous procedure is repeated 100 times for overlapping brackets of

decreasing voxel validation accuracy (i.e., the top bracket contains the 500 voxels with the most accurate encoding model predic-

tions, the second bracket contains the voxels with the 251st–751th most accurate, etc.). Values on the x-axes of plots in Figures 4D

and 4E give the largest (over the 100 repeats) of the smallest validation accuracy within each bracket. The standard error captures the

variation of the identification ‘‘hits’’ percentage within each bracket.

To estimate the level of identification due to chance, the real identities of the locations (objects) underwent 5 shuffling per each of

the 100 repeats discussed above and a common histogram was built from these 500 values for each bracket. Chance level for hits,

the center of the null distribution, was always at 50%. The region outside the gray shading near the bottom of plots in Figures 4D and

4E correspond to identification score with significance level p < 0:01.
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